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Abstract—Automatically describing audio-visual content with
texts, namely video captioning, has received significant attention
due to its potential applications across diverse fields, such as for
the visually impaired. Deep neural networks are the dominant
methods, offering state-of-the-art performance. However, these
methods are often undeployable in low-power devices like smart-
phones due to the large size of the model parameters involved.
In this paper, we propose to exploit simple pooling front-end
and down-sampling algorithms with knowledge distillation for
audio and visual attributes using a reduced number of audio-
visual frames. With the help of knowledge distillation from
the teacher model, our proposed method greatly reduces the
redundant information in audio-visual streams without losing
critical contexts for caption generation. Extensive experimental
evaluations on the MSR-VTT dataset demonstrate that our
proposed approach significantly reduces the inference time by
about 80% with a small sacrifice (less than 0.02%) in captioning
accuracy.

Index Terms—Image Processing, Audio Processing, Natural
Language Processing, Deep Learning, Video Captioning

I. INTRODUCTION

Video captioning aims to generate grammatically and se-
mantically meaningful sentences for the content of audio-
visual media, driven by applications such as video indexing
or retrieval and virtual assistants for visually and hearing-
impaired people [1].

This task involves several challenges, such as identifying
objects and scenes in the video frame, extracting audio at-
tributes, and audio-visual fusion to describe the content with
certain grammatical structures and semantics [2]. These issues
could be addressed with the release of large-scale datasets and
advances in deep learning, which has led to the development
of highly complex networks with improved caption generation.
However, this can also lead to high computational cost due
to the increased complexity of the networks and scale of
the datasets. One approach to overcome this issue is to use
efficient audio and visual feature extraction networks as they
provide faster inference time [3]. These networks can be
categorized into four classes: namely, model compression [4],
[5], knowledge distillation [6]–[8], efficient networks [9], [10],
and simple pooling front-ends (SimPFs) [11]. A framework
that applies passive filter pruning to eliminate some filters
is proposed for a compressed convolutional neural network
(CNN) [4]. Similarly, a low-complexity CNN architecture is
presented in [5], by reducing model parameters and memory
usage. A BERT architecture is proposed as a teacher network

that provides soft labels to guide a seq2seq network for audio
speech recognition [6]. In a highway deep neural network,
knowledge distillation and teacher-student training are lever-
aged to achieve improved accuracy with a reduced number
of parameters [7]. Pretrained audio neural networks (PANNs)
[9], which are trained on AudioSet [12], can be transferred
to audio-related tasks such as audio classification. SimPFs are
employed to reduce the required number of audio frames by
reducing floating point operations on a network for efficient
audio classification [11].

For visual feature extraction, knowledge distillation is used
in [13] to generate soft labels for simpler networks to be
deployed on a device with low computing resources. Similarly,
knowledge distillation with an attention mechanism is used
in [14], which groups high-dimensional features into low-
dimensional vectors. While in [15], all the visual frames in
a video are used to train the teacher network. The student net-
work then uses uniformly down-sampled frames and mimics
the teacher for efficient video classification.

In this study, we propose an efficient audio-visual captioning
method based on the teacher-student network, which uses
knowledge distillation for audio and visual feature extraction
with a reduced number of frames, leading to substantially
improved captioning efficiency. More specifically, the PANNs
network [9] is used with SimPF [11] for audio feature extrac-
tion, while Inception-v3 CNN architecture [16] with down-
sampling is utilized for visual feature extraction [17]. The
language model uses simple stacked gated recurrent units
(GRUs) [18] with dropouts [19] and residual connections
[20], [21]. The student network is first trained and fine-tuned
with the cross-entropy loss. To further improve the captioning
accuracy, the representation loss is also used along with the
cross-entropy loss. The experiments show that knowledge
distillation can speed up audio-visual feature extraction with
a negligible drop in captioning accuracy.

This paper is organized as follows: Section II presents the
proposed audio-visual video captioning approach. Section III
describes the dataset and performance metrics for experimental
evaluations and discusses the experimental results, followed by
the conclusions.

II. PROPOSED APPROACH

This section presents the proposed video captioning ap-
proach based on the teacher-student model, as illustrated in



Fig. 1: The Proposed Approach

Figure 1.
In video captioning, a sequence of words needs to be

predicted from a vocabulary using audio and visual at-
tributes. The teacher network utilizes Na audio frames
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Nv−1) of the video V to predict a caption which

can be stated using a neural network f :

P (Ŷ|V) = f(Fa,Fv). (1)

where Ŷ denotes a series of words as (ŷ0, ŷ1, ...ŷNc) and N c

refers to the number of words in the caption.
We employ Inception-v3 CNN architecture pre-trained on

the ImageNet dataset to extract features from visual frames.
The architecture resizes the images to 3×299×299, then the
average pooling layer outputs a latent vector consisting of
2048 units. Similarly, audio features are extracted with PANNs
CNN architecture containing 10 stacked CNN layers pre-
trained on AudioSet. A recurrent neural network (RNN)-
based network that utilizes audio and visual features from
the Inception-v3 and PANNs is used as a language model to
generate captions. We employ a mean operator and acquire
latent vectors from time-series input, which describe audio and
visual features. These latent vectors are concatenated and fed
to the RNN-based network consisting of embedding, GRUs,
and linear layers. Moreover, residual connections and dropouts
are applied between layers to maintain gradient flow from the
lower to upper layers. The teacher network is trained with
the cross-entropy loss denoted as LCE . The student network

is similar to the teacher, where SimPF and down-sampling
algorithms are employed to reduce the number of audio and
visual frames by a compression rate in a video. Specifically,
we use the spectral pooling method of SimPF, which computes
the discrete Fourier transform (DFT) of the audio frames Fa

and then crops the center with a bounding box to get F̃a. Then
the output of the inverse discrete Fourier transform (IDFT) F̂a

is taken as the compressed audio, as shown below,

F̃a = DFT (Fa)

F̂a = IDFT (F̃a
crop)

(2)

Down-sampling is performed on Fv to obtain compressed
visual frames F̂v ,

F̂v = Fv(m/k), m = 0, 1, 2, ..., Nv − 1 (3)

where k denotes the compression rate, ranging from 0 to 1.
We extract audio and visual features from compressed

frames using PANNs and Inception-v3. Then, latent vectors
are acquired with a mean operator. We employ knowledge
distillation from the teacher network to increase the accuracy
of caption generation. A neural network with two hidden layers
is utilized to increase the resemblance of latent vectors to
the teacher. The network is trained to minimize the L1 loss
between student and teacher latent vectors. We denote this loss
as Lrep where rep refers to representation. We train the teacher
network, and then the teacher guides the optimization of the



TABLE I: Performance metric evaluation results on the MSR-VTT test set

BLEU-1 BLEU-2 BLEU-3 BLEU-4 CIDEr METEOR ROUGE-L SPICE SCORE Diff (%)

Lrep Student (k = 0.2) 0.722 0.555 0.422 0.311 0.267 0.236 0.554 0.045 0.321 0.127

Lrep Student (k = 0.4) 0.715 0.546 0.411 0.294 0.223 0.234 0.539 0.043 0.306 0.168

Lrep Student (k = 0.6) 0.709 0.542 0.412 0.300 0.232 0.231 0.543 0.041 0.308 0.163

Lrep Student (k = 0.8) 0.719 0.550 0.413 0.300 0.256 0.235 0.545 0.046 0.315 0.144

Lrep + LCE Student (k = 0.2) 0.766 0.613 0.476 0.357 0.375 0.256 0.585 0.054 0.365 0.008

Lrep + LCE Student (k = 0.4) 0.774 0.618 0.473 0.348 0.359 0.256 0.582 0.055 0.361 0.019

Lrep + LCE Student (k = 0.6) 0.769 0.616 0.478 0.357 0.375 0.258 0.586 0.055 0.366 0.005

Lrep + LCE Student (k = 0.8) 0.765 0.614 0.479 0.358 0.366 0.255 0.583 0.054 0.362 0.016

Teacher 0.760 0.612 0.473 0.352 0.397 0.254 0.583 0.054 0.368 0.000

parameters of the student network. In this study, we train the
student-teacher network with the following losses:

Lrep: The student network is only trained by the Lrep loss
and is learned to mimic the audio-visual features of the teacher
network. Then, the language model is trained with the updated
neural network.

Lrep + LCE : we employ both Lrep and LCE losses to
minimize the representation loss and maximize the captioning
accuracy.

III. EXPERIMENTAL EVALUATIONS

A. Setup and Performance Metrics

The proposed approach is evaluated on the MSR-VTT
dataset [22], which initially consists of 10,000 videos, each
with 20 ground-truth captions. However, by the time the
experiments are executed, only 5,074 and 2,123 videos are
available from the training and testing sets, respectively.
Several performance metrics are employed to measure the
accuracy of the video captioning approach, including metrics
for evaluation of translation with explicit ordering (METEOR)
[23], bilingual evaluation understudy (BLEU) [24], consensus-
based image description evaluation (CIDEr) [25], and recall-
oriented understudy for gisting evaluation-longest common
subsequence (ROUGE-L) [26], and semantic propositional
image caption evaluation (SPICE) [27].

The ranking of the results is based on a final SCORE which
is calculated as an average of all performance metrics. In
calculating the final SCORE, we used the mean of the BLEU
scores. For the experiments, the visual frames of the videos are
resized into the shape of 3×299×299. We utilized tokenization
and punctuation removal on the ground-truth captions of the
training set. The latent vector size of the layers in the language
models is set to 2,576, and the dimension of the linear layer
output is equal to the vocabulary length. We evaluated the
proposed approach with 0.2, 0.4, 0.6, and 0.8 compression
ratios.

B. Results & Discussion

The accuracy and time consumption of the teacher and
student networks are measured with the test set of the MSR-
VTT dataset under the Lrep, and Lrep + LCE losses. In the

TABLE II: Time consumption evaluation results on random
100 videos from the MSR-VTT test set

Network average time consumption (s) Diff (%)

Student (k = 0.2) 2.77 79.1

Student (k = 0.4) 5.65 57.4

Student (k = 0.6) 8.31 37.4

Student (k = 0.8) 11.03 16.9

Teacher 13.28 0.0

evaluations, we compressed the frames on the student networks
to enable faster inference time. The results for the students and
teacher networks are given in Table I, while time consumptions
are shown in Table II.

Using only the Lrep loss resulted in poor captioning per-
formance in all performance metrics regarding the teacher
network, as seen in Table I. Notably, among the student
networks trained with the Lrep loss, the compression rate
of 0.2 has achieved the highest final SCORE. However, the
combination of the Lrep and LCE losses in the student
networks offered an accuracy approaching the level of the
teacher model across all performance metrics.

The captioning accuracy of the student network is increased
from 0.321 to 0.365 with Lrep+LCE under the compression
rate of 0.2. The difference between the accuracy of the
teacher and student network dropped from 0.127% to 0.008%.
However, the student network with a 0.4 compression rate
leveraged the final SCORE from 0.306 to 0.361, which is still
lower than that of the compression rate at 0.2. We achieved the
highest final SCORE at 0.366 using the student network with
a compression rate of 0.6. This is followed by the compressed
student network with a compression rate of 0.8, with a final
SCORE of 0.362. Furthermore, the student networks with
compressed audio and visual frames scored higher across some
metrics than the teacher. This indicates that student networks
can generate accurate captions similar to the teacher. In Table
II, we present the time consumption of feature extraction
for both audio and visual frames from randomly selected
100 videos from the test set of the MSR-VTT dataset. The
compression rate 0.8 reduces feature extraction time up to



16.9%, while 0.6 compression rate decreases the audio-visual
feature extraction time by about 37.4%. Similarly, 0.4 and
0.2 have reduced the inference time by 57.4% and 79.1%,
respectively. Table II shows that the student networks reduce
inference time significantly compared to the teacher network.

IV. CONCLUSION

In this study, we have presented a simple pooling front-end
and down-sampling method to reduce the number of audio and
visual frames in a video for video captioning. Furthermore, we
have proposed a teacher-student based-network to leverage the
accuracy of caption generation with knowledge distillation.
We used Lrep representation and LCE cross-entropy loss
for network training. The proposed approach is evaluated on
the MSR-VTT dataset. Experimental results show that the
proposed approach significantly reduces the inference time
with a negligible drop in captioning accuracy.
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